
AI算法工程师(中级)课程
文章平均质量分 94
本专栏是《人工智能算法工程师(中级)》职业能力课程。课程适合有一定编程基础和数学基础的人员,适合人工智能相关从业人员、应往届计算机相关毕业生。内容具有一定深度,需要具备一定的人工智能基础知识。内容包括了opencv视觉处理、SK-Learn机器学习、PyTorch、神经网络、RNN、模型训练部署等。
微学AI
人工智能高级研发者,名校硕士学历毕业,拥有15项AI领域发明专利,主攻深度学习实战案例、机器学习实战案例、大模型实战项目,研究方向包括:深度学习应用技巧,Pytorch搭建模型,机器学习经典模型,计算机视觉,自然语言处理,知识图谱,大模型实战(包括:ChatGLM、通义千问、百川、LLaMA、书生等开源模型的微调技巧、Qlora微调、提示词工程、思维链、RAG技术、LangChain框架、智能体应用项目、大模型私有化部署)。项目主要运用于医疗健康、政府文档、教育、金融、生物学、物理学、企业管理等领域。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
人工智能算法工程师(中级)课程21-深度学习中各种优化器算法的应用与实践、代码详解
大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程21-深度学习中各种优化器算法的应用与实践、代码详解。本文将介绍PyTorch框架下的几种优化器,展示如何使用PyTorch中的优化器,我们将使用MNIST数据集和一个简单的多层感知器(MLP)模型。本文仅用于演示不同优化器的用法,实际应用中可能需要调整超参数以获得最佳性能。SGD,即随机梯度下降,是机器学习中不可或缺的伙伴,它巧妙地通过单个样本或一小批样本计算梯度来更新模型参数,就像一位精明的向导,在数据的大海中引领算法逐步靠近最优解原创 2025-08-04 11:03:28 · 770 阅读 · 0 评论 -
人工智能算法工程师(中级)课程20-模型注意力机制之注意力机制的原理、计算方式与代码详解
本文详细介绍了注意力机制的不同类型,包括普通注意力、自注意力、多头注意力、通道注意力、空间注意力和混合注意力,并提供了每种注意力的数学原理和基于PyTorch的代码实现。通过这些示例,我们可以看到注意力机制在深度学习模型中的重要作用,它能够有效地提高模型对关键信息的捕捉能力。原创 2025-08-04 08:15:30 · 1140 阅读 · 0 评论 -
人工智能算法工程师(中级)课程19-模型的量化与部署之模型部署和存储方式与代码详解
本文详细介绍了神经网络模型的部署和存储方式,包括Libtorch源生部署、torch.jit.trace()转换、转成ONNX部署以及TensorRt部署加速。通过数学原理的阐述和完整可运行的PyTorch代码,希望读者能够更好地理解和掌握这些技术。在实际应用中,可以根据需求选择合适的部署方式,以实现高效、便捷的模型部署。原创 2025-08-04 16:07:39 · 1134 阅读 · 0 评论 -
人工智能算法工程师(中级)课程18-模型的量化与部署之模型的蒸馏技术与代码详解
蒸馏技术(Distillation)是一种将教师模型的知识传递给学生模型的方法。具体来说,教师模型首先对训练数据进行预测,生成软标签(Soft Label),然后学生模型在这些软标签的指导下进行训练。我们选择ResNet50作为教师模型,ResNet18作为学生模型。教师模型使用预训练权重。本文详细介绍了模型蒸馏技术的原理,并通过PyTorch框架实现了蒸馏过程。通过蒸馏技术,我们可以在保持模型性能的同时,降低模型的复杂度,为移动端和边缘设备上的应用提供了可能。原创 2025-08-04 15:30:18 · 1217 阅读 · 0 评论 -
人工智能算法工程师(中级)课程17-模型的量化与部署之剪枝技巧与代码详解
本文详细介绍了模型量化与部署中的剪枝技巧,包括非结构化剪枝、结构化剪枝、随机剪枝、范数剪枝和迭代剪枝。通过数学原理和代码实现,希望读者能更好地理解和应用这些剪枝方法。在实际应用中,可以根据模型特点和硬件需求选择合适的剪枝策略。原创 2025-08-04 16:50:38 · 880 阅读 · 0 评论 -
人工智能算法工程师(中级)课程16-模型的量化与部署之精度指标与代码详解
本文详细介绍了模型量化与部署中的常见精度指标及其数学原理,并通过PyTorch代码进行了实现。了解这些指标,有助于更好地评估和优化模型性能。在实际应用中,应根据具体任务和需求选择合适的评价指标。原创 2025-08-04 09:00:14 · 1069 阅读 · 0 评论 -
人工智能算法工程师(中级)课程15-常见的网络模型及设计原理与代码详解
大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程15-常见的网络模型及设计原理与代码详解。本文给大家介绍常见的网络模型及其设计原理与代码实现,涵盖了LeNet、AlexNet、VggNet、GoogLeNet、InceptionNet、ResNet、DenseNet、DarkNet、MobileNet等经典网络。通过对这些网络模型的深入剖析,我们了解到LeNet是最早的卷积神经网络,适用于手写数字识别;原创 2025-08-04 16:24:01 · 940 阅读 · 0 评论 -
人工智能算法工程师(中级)课程14-神经网络的优化与设计之拟合问题及优化与代码详解
在机器学习领域,拟合问题是指通过训练数据找到最佳模型参数,使得模型在未知数据上的表现尽可能好。拟合问题主要包括欠拟合和过拟合两种现象。原创 2025-08-04 16:15:55 · 1219 阅读 · 0 评论 -
人工智能算法工程师(中级)课程13-神经网络的优化与设计之梯度问题及优化与代码详解
本文详细介绍了梯度问题及优化策略,包括梯度爆炸、梯度消失、学习率调整、参数初始化、激活函数选择、Batch Norm、Layer Norm和梯度裁剪。通过PyTorch代码实现,展示了如何在实际应用中解决梯度问题。希望本文对您在深度学习领域的研究和实践有所帮助。原创 2025-08-04 15:36:57 · 958 阅读 · 0 评论 -
人工智能算法工程师(中级)课程12-PyTorch神经网络之LSTM和GRU网络与代码详解1
本文详细介绍了LSTM和GRU网络的原理、运行过程、区别及应用场景,并通过PyTorch实现了这两个网络。在实际应用中,可以根据任务需求和计算资源选择合适的网络结构。LSTM和GRU网络在处理长序列数据方面具有显著优势,广泛应用于自然语言处理、语音识别和时间序列预测等领域。希望本文能帮助读者更好地理解和应用这两种强大的循环神经网络。原创 2025-08-04 15:30:05 · 1418 阅读 · 0 评论 -
人工智能算法工程师(中级)课程11-PyTorch神经网络之循环神经网络RNN与代码详解
本文详细介绍了循环神经网络(RNN)的原理、运行过程、类别、参数计算和应用场景,并通过PyTorch框架给出了一个完整的RNN模型实现。通过本文,读者可以了解到RNN在处理序列数据方面的优势,以及如何在实际应用中使用RNN。需要注意的是,实际应用中通常会使用PyTorch提供的内置RNN模块,如nn.RNNnn.LSTM和nn.GRU,这些模块提供了更高效、更灵活的实现。原创 2025-08-04 14:08:35 · 1272 阅读 · 0 评论 -
人工智能算法工程师(中级)课程10-PyTorch神经网络之卷积神经网络与代码详解
本文详细介绍了卷积神经网络的原理、构成元素、运行过程、感受野计算、参数和运算量、常见卷积类型以及池化应用,并附上了相应的代码实现。卷积神经网络作为一种强大的深度学习模型,在图像处理领域具有广泛的应用。希望本文能帮助读者更好地理解和应用卷积神经网络。原创 2025-08-04 17:25:32 · 1205 阅读 · 0 评论 -
人工智能算法工程师(中级)课程9-PyTorch神经网络之全连接神经网络实战与代码详解
本篇文章从全连接神经网络的基本原理出发,介绍了全连接模型的设计、参数计算以及如何实现手写数字识别和猫狗识别。通过配套的完整可运行代码,读者可以更好地理解全连接神经网络的实现过程。在实际应用中,全连接神经网络虽然已被卷积神经网络(CNN)等更先进的网络结构所取代,但其基本原理仍然是深度学习领域的重要基石。希望本文能帮助读者深入掌握全连接神经网络,并为后续学习打下坚实的基础。原创 2025-08-04 15:58:51 · 1071 阅读 · 0 评论 -
人工智能算法工程师(中级)课程8-PyTorch神经网络之神经网络基础与代码详解
本文我们实现了一个简单的神经网络,包括前向传播、反向传播、梯度下降和评估过程。这个网络虽然简单,但是它展示了神经网络的基本原理和实现方法。在实际应用中,神经网络的结构会更加复杂,涉及更多的层和节点,以及更高级的优化算法和正则化技术。此外,现代深度学习框架(如TensorFlow和PyTorch)提供了更高效的实现和自动微分功能,使得神经网络的构建和训练更加便捷。原创 2025-08-04 08:36:20 · 900 阅读 · 0 评论 -
人工智能算法工程师(中级)课程7-PyTorch神经网络之深度学习框架与代码详解
大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程7-PyTorch神经网络之深度学习框架与代码详解。深度学习作为人工智能领域的重要分支,已经在图像识别、自然语言处理、推荐系统等多个领域取得了显著成果。而PyTorch作为一个开源的深度学习框架,凭借其易用性、动态计算图和高灵活性,受到了广大研究者和开发者的喜爱。本文将详细介绍PyTorch的基本操作,包括Tensor的创建、形状和类型、梯度设置、运算,以及数据的读取和GPU的使用,并附上完整可运行的代码。原创 2025-08-04 08:31:49 · 893 阅读 · 0 评论 -
人工智能算法工程师(中级)课程6-sklearn机器学习之聚类问题与代码详解
本篇文章详细介绍了sklearn中三种常见的聚类算法:K-Means、DBSCAN和层次聚类。通过数学原理、公式及代码实现,帮助读者更好地理解和应用这些算法。在实际应用中,根据数据特点选择合适的聚类算法至关重要。希望本文对您有所帮助!原创 2025-08-04 14:51:46 · 1233 阅读 · 0 评论 -
人工智能算法工程师(中级)课程5-sklearn机器学习之分类问题与代码详解
在本文中,我主要是使用sklearn库来解决机器学习中的分类问题。并详细讨论了SVM-SVC模型、决策树、KD树和KNN模型,并提供了每个模型的数学原理、公式和完整的可运行代码示例。这些模型在解决实际问题时各有优势,可以根据具体问题和数据集的特点来选择合适的模型。通过本文的学习,读者应该能够更好地理解这些分类模型,并能够将它们应用于实际问题中。原创 2025-08-04 14:47:37 · 1104 阅读 · 0 评论 -
人工智能算法工程师(中级)课程4-sklearn机器学习之回归问题与代码详解
大家好,我是微学AI,今天给大家介绍一下人工智能中级课程4-sklearn机器学习之回归问题与代码详解。回归分析是统计学和机器学习中的一种重要方法,用于研究因变量和自变量之间的关系。在机器学习中,回归算法被广泛应用于预测分析、趋势分析等领域。原创 2025-08-04 14:40:22 · 821 阅读 · 0 评论 -
人工智能算法工程师(中级)课程3-sklearn机器学习之数据处理与代码详解
Sklearn是一个基于Python的开源机器学习库,它提供了一系列简单有效的数据挖掘和数据分析工具。简单易用:Sklearn提供了简洁的API,使得用户可以轻松实现各种机器学习算法。功能丰富:Sklearn包含了大量的机器学习算法,如分类、回归、聚类、降维等。良好的文档和社区支持:Sklearn拥有详细的文档和活跃的社区,方便用户学习和解决问题。广泛的适用性:Sklearn可以与NumPy、Pandas、Matplotlib等Python库无缝集成,适用于各种机器学习任务。原创 2025-08-04 14:32:33 · 1000 阅读 · 0 评论 -
人工智能算法工程师(中级)课程2-Opencv视觉处理之高级操作与代码详解
大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程2-Opencv视觉处理之高级操作。在上一节课中的OpenCV基础操作我们了解到OpenCV是一个开源的计算机视觉软件库。它提供了各种视觉处理函数,并支持多种编程语言,如C++、Python、Java等。OpenCV具有跨平台性,可以在不同的操作系统上运行。它广泛应用于图像处理、视频分析、物体识别、人脸识别、动作识别等领域。原创 2025-08-04 12:36:16 · 1422 阅读 · 0 评论 -
人工智能算法工程师(中级)课程1-Opencv视觉处理之基本操作与代码详解
大家好,我是微学AI,今天给大家介绍一下人工智能中级课程1-Opencv视觉处理之基本操作。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它提供了各种视觉处理函数,并支持多种编程语言,如C++、Python、Java等。OpenCV具有跨平台性,可以在不同的操作系统上运行。它广泛应用于图像处理、视频分析、物体识别、人脸识别、动作识别等领域。原创 2025-08-04 11:50:51 · 599 阅读 · 0 评论